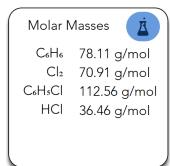

Theoretical and Percent Yield

Question One

If the reaction below is started with 40. grams of magnesium and an excess of nitric acid according to the equation below, what is the theoretical yield of hydrogen?


$$Mg(s) + 2 HNO_3(aq) \rightarrow H_2(g) + Mg(NO_3)_2(aq)$$

If 1.7 grams of hydrogen is actually produced, what was the percent yield of hydrogen?

Question Two $C_6H_6 + Cl_2 \rightarrow C_6H_5Cl + HCl$

- a. What is the theoretical yield of C_6H_5Cl if 45.6 g of benzene (C_6H_6) reacts with excess chlorine gas?
- b. If the actual yield is 63.7 g of chlorobenzene, calculate the percent yield.

Question Three

Solid copper reacts with silver nitrate solution according to the equation below.

$$Cu(s) + 2 AgNO_3(aq) \rightarrow 2 Ag(s) + Cu(NO_3)_2 (aq)$$

If 5.0 grams of copper and excess silver nitrate react, 12 grams of solid silver is produced. What is the percent yield of the reaction?

Molar Masses

Cu 63.55 g/mol AgNO₃ 169.87 g/mol Ag 107.87 g/mol Cu(NO₃)₂ 187.56 g/mol

Question Four

If, in the reaction below, 49 grams of Fe_3O_4 produces a 78.25 % yield of Fe. How many grams of Fe are produced?

$$Fe_3O_4 + 4 H_2 \rightarrow 3 Fe + 4 H_2O$$

Molar Masses

Fe₃O₄ 231.53 g/mol H₂ 2.02 g/mol

Fe 55.85 g/mol

H₂O 18.02 g/mol

Question Five

If, in the reaction below, 28 grams of $\rm H_2O$ produces a 79.59 % yield of HF. How many grams are produced?

 $CH_3COF + H_2O \rightarrow CH_3COOH + HF$

Molar Masses

CH₃COF 62.04 g/mol H₂O 18.02 g/mol CH₃COOH 60.06 g/mol HF 20.01 g/mol