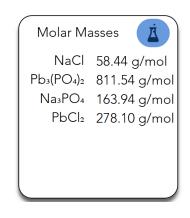

Limiting and Excess Reactants

Example One

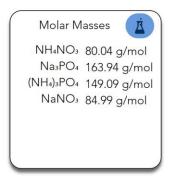
If 4.0 moles aqueous lead(II) nitrate and 3.0 moles of sodium chloride react, what mass of your precipitate will be formed?


 $Pb(NO_3)_2(aq) + 2NaCl(aq) \rightarrow PbCl_2(s) + 2NaNO_3(aq)$

Example Two

For the following equation, how many grams of lead (II) chloride can be produced from 8.0 moles of sodium chloride and 2.0 moles of lead (II) phosphate.

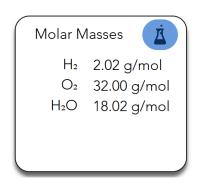
 $6 \ NaCl + Pb_3(PO_4)_2 \rightarrow 2 \ Na_3PO_4 + 3 \ PbCl_2$



Example Three

Consider the following reaction:

3 NH₄NO₃ + Na₃PO₄ \rightarrow (NH₄)₃PO₄ + 3 NaNO₃


If we started with 30.0 grams of ammonium nitrate and 50.0 grams of sodium phosphate, how much sodium nitrate could we produce?

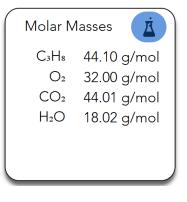
Example Four

Suppose you combine 10.0 grams of hydrogen gas and 15.0 grams of oxygen gas to make water. How many grams of water vapor are made? How much excess remains?

 $2 \ \mathrm{H_2} + \mathrm{O_2} \rightarrow 2 \ \mathrm{H_2O}$

Example Five

Given the following reaction:


 $\mathrm{C_3H_8} + 5 \ \mathrm{O_2} \rightarrow 3 \ \mathrm{CO_2} + 4 \ \mathrm{H_2O}$

a) If you start with 14.8 g of C₃H₈ and 3.44 g of O₂, determine the limiting reagent

b) determine the number of moles of carbon dioxide produced

c) determine the number of grams of H₂O produced

d) determine the number of grams of excess reagent left

