Predicting Precipitation

Example One

Will a precipitate form when 0.080 L of 1.0×10^{-2} M NaF is mixed with 0.010 L of 2.0×10^{-2} M Ca(NO₃)₂? The K_{sp} for CaF₂ is 3.9×10^{-11}

Example Two

Will a precipitate form for a solution containing 2.0×10^{-3} M Pb(NO₃)₂ and 4.0×10^{-5} M Na₂SO₄? The K_{sp} for PbSO₄ is 6.3×10^{-7} .

Example Three

Will a precipitate form when 0.040 L of 2.0 $\times10^{-2}$ M NaF is mixed with 0.010 L of 3.0 $\times10^{-2}$ M Ca(NO₃)₂? The K_{sp} for CaF₂ is 3.9 $\times10^{-11}$

Example Four

A solution contains 2.0×10^{-2} M Ag⁺ and 4.0×10^{-2} M Pb²⁺. By adding Cl⁻ to the solution, the precipitation of both AgCl (K_{sp} = 1.8×10^{-10}) and PbCl₂ (K_{sp} = 1.7×10^{-5}) will occur. What concentration of Cl⁻ is needed to begin precipitation of each salt? Does AgCl or PbCl₂ precipitate first?

Example Five

What pH is required to start precipitation of Ca(OH)₂ from a 0.800 M solution of CaCl₂? The K_{sp} of Ca(OH)₂ = 7.9×10^{-6} .

Example Six

A buffer containing ammonia and ammonium ions is used to prepare a 0.500 M solution of CaCl₂. If the buffer becomes too basic, calcium hydroxide, Ca(OH)₂ will precipitate out of solution. What ratio of NH_3/NH_4^+ will start precipitation of Ca(OH)₂ from the CaCl₂ solution?

 K_{sp} of Ca(OH)_2 = 7.9 x 10^{-6} and K_b of $NH_3 = 1.8 \ x \ 10^{-5}$