pH Calculations of Buffers

Example One

Calculate the pH of a buffer solution made by adding 2.0 g of NaC₂H₃O₂ (MW: 82.0 g/mol) to 250.0 mL 1.00 M HC₂H₃O₂. Assume that the total volume of the buffer solution remains unchanged. The K_a for HC₂H₃O₂ is Ka= 1.8×10^{-5}

Example Two

What mass of NaC₂H₃O₂ (MW: 82.0 g/mol) must be dissolved in 2.00 L of 0.080 M HC₂H₃O₂ to produce a solution with pH=4.95? K_a = 1.8x10⁻⁵ Assume the volume remains constant. Video & Written Solutions

Example Three

Determine the pH of the buffer solution if 600.0 mL of 1.00 M of the base pyridine, C_5H_5N and 500.0 mL of 2.00 M of its chloride salt, C_5H_5NHCl are combined. The K_b of C_5H_5N is 1.7×10^{-9} .

Example Four

What is the pH of a solution made by mixing equal moles of $\rm NH_3$ and $\rm NH_4Cl.$ The K_b of $\rm NH_3$ is $1.8 \times 10^{-5}.$

Example Five

Which of the following buffer systems would be the best choice to create a buffer with pH of 7.20?

a. $HC_2H_3O_2 / KC_2H_3O_2$ (K_a $HC_2H_3O_2=1.8 \times 10^{-5}$) b. NH_3 / NH_4Br (K_b $NH_3=1.76 \times 10^{-5}$) c. $HClO_2 / NaClO_2$ (K_a $HClO_2=1.1 \times 10^{-2}$) d. HClO / NaClO (K_a $HClO=2.9 \times 10^{-8}$)